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Abstract

Low-order models of In ideal linear focusing systems of space-charge-dominated beams,the
transverse space-charge distribution of an ion beam tends to be nearly uniform within an elliptical
envelope boundary. This produces linear transverse self-field forces within the beam that preserve
beam phase space area (emittance). Non-ideal forces from aberrations of the applied focusing
system and other sources can result in transverse density profiles that have strongly nonuniform
charge density. This creates nonlinear self-field forces that can launch a broad spectrum of
collective modes internal to the beam. There have been concerns that the free energy of such
space-charge waves could lead to a loss of beam control and excessive emittance growth from
oscillating nonlinear self-field forces. Here we employ the two-dimensional module of the WARP
electrostatic particle in cell code to simulate this process. We find that collective relaxation
processes tend to drive an initial nonuniform density beam to a final, relaxed state that is
equilibrium-like with a more uniform, smoothed density profile and low-order residual oscillations.
These relaxations appear driven by nonlinear wave interactions and phase-mixing associated with
broad mode spectrums. This process is investigated for continuous focusing channels and periodic
quadrupole focusing channels. It is found that surprising degrees of initial nonuniformity can be
tolerated with modest emittance growth and that rms beam control can be maintained. Cases where
the relaxation is fast and slow are analyzed. Simulation results are contrasted to earlier analytical
theories[1] that should provide an upper bound on emittance growth if excessive halo 1s not
generated. This work suggests that a surprising degree of initial space-charge nonuniformity can
be tolerated in intense beams.




Approach

Assume that the spectrum of collective modes launched by initial space-
charge nonuniformities is broad and will rapidly drive thermalization to a
uniform density profile
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Model the real transport channel (typically AG Quadrupole) with a

continuous linear focusing channel

e Conservation of charge and energy can be used to connect the initial and final states

» Does not require understanding of the (possibly complicated) intervening evolution
between the initial and final states

This energy method has been used effectively in many intense beam and
nonneutral plasma studies. See, for example:

Martin Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 1994).
Ronald C. Davidson, An Introduction to the Physics of Nonneutral Plasmas (Addison-Wesley, New York, 1990)



Background

Significant beam space-charge nonuniformity has been observed in beams

emerging from some intense heavy-ion injectors

- Beams can have significant radial structure in the density profile (peaked,
hollowed, etc.) depending on optical errors

« Such initial distributions are not well adapted to linear focusing channels

« Misadapted distribution can launch a spectrum of collective modes

Collective modes can thermalize (relax) via phase mixing, nonlinear wave-
wave interactions, etc.

- Relaxation can result in a transfer of energy from the intense beam self-
field to thermal energy leading to emittance growth

Typical Heavy-lon Fusion:
g\

Potential Drop _ _ -9
Across Beam Q(q)lbeam center 0 Ibeam edge) 47580 2.5 keV

Spatial Average ]—-.; _ [8i/(2R2)]Eb . 20 eV
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=> Even a small thermalization space-charge energies
could result in large emittance increases

Can a better estimate be provided of possible emittance increases in space-
charge dominated beams due to the thermalization of space-charge
nonuniformities?



Initial distribution distortions will launch a spectrum of
collective mode perturbations that evolve

Kinetic and fluid theories have been employed to analyze perturbations on a uniform
density intense-beam equilibrium [Lund and Davidson, Phys. Plasmas, 5 3028 (1998)]

Small Amplitude Perturbations (arbitrary units, kinetic and fluid theory)
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Theoretical Model(1)

Employ the conventional Vlasov-Poisson System to model the electrostatic
evolution of a nonrealativistic (for convenience) beam of charged particles
of mass m and charge g propagating with axial kinetic energy E£; in a
continuous focusing channel
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Here s is the axial propagation distance (denote x’ = dx/ds), kg = const is the applied
focusmg force, r, is the radius of a perfectly conducing, cylindrical beam pipe, and
f ( X, ?c , §) is the single particle distribution function



Theoretical Model(2)

Any solution of the Vlasov-Poisson System will be consistent with the rms
envelope equation:

2
2 0O &
R'+kpgaR—=-— =20
0
§ R 53
0 = gh = Perveance (constant)
[4neO]Eb
2. 1/2 .
R = 2(x") = rms edge radius

exz = 16] (xz) (x'z) — {xx")] = rms edge emittance squared

(...) = j }jf{iifc d;i'y d;l);;ly = transverse statistical average

« The emittance is a statistical measure of beam phase space area and
evolves according to the full Vlasov-Poisson system



Global Conservation Constraints

The Vlasov Poisson System has several global conservation constraints

Generalized Entropy (S any smooth function):
U, = [[S(f)dx'dy'dxdy = const

Normalized Angular Momentum:
Py = [[(xy'—yx")fdx'dy'dxdy = const

System Energy (per unit axial length):

|V
8

|2 ! 1 2 2 1 1 2
E = E,[[X" fdxdy dxdy-ﬂ-Eb”kBO?c fax'dy'dxdy + | ‘1;' dxdy = const

A special case of the generalized entropy constraint with S(f) = fis line
charge conservation:

A = [[fdx'dy'dxdy = const

System line charge and energy conservation will be employed here to analyze beam
emittance changes on thermalization of space-charge nonuniformities.



Choice of Initial Distribution Parameterization (2)

Density profile parameterization can model strong beam hollowing
« Fix hollowing factor # = 1/2 and line charge A = const

n(x)/IM(grr,®)]  h=1/4
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Connections of Initial to Final State

Assume that the final state is rms matched (R’ = 0 = R,”) with a uniform
density profile (2 = 1) and that charge (A = const) and system energy (E,) is
conserved

« Energy constraint:

2
(R¢/R)” - A h)[p+4+(p+3)ph] logli (P +2)(pht ) f} E, (RR S
t- (Gi/%)z (p+2)(p +4)2 + phy’ (p+H)(ph+2)R; | 24}

-- Here and henceforth, subscripts i and f refer to the initial and final beams

-- For an initially rms matched beam envelope R;’=0=R;”

-- Solve for the final to intial ratio of rms radii, Re/ R; in terms of the system
parameters 4, 6,/0, etc.

- The ratio of final to initial emittance (¢,) can be calculated (or similarly
any other quantity in final to initial state ratio) as:

2 2
e Ry [Rp/R) —[1-—(0/00)}
& & (Gi/co)z ~ R} /UG R,)

-- Analyze using constraint equation for R,/ R; and system parameters



- Changes on Relaxation -- initially rms matched (R;" = 0 = R,”),
hollowed (p =2, 0 <& <1) density profile

Assume full relaxation to a uniform, matched density profile and solve the
equations of constraint to obtain:
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Increase in beam rms radius (R) is very small

Emittance (€,) growth modest even for large hollowing factors (h -> 0)
Larger growth for stronger initial space-charge strength (c;/0y —> 0)



Changes on Relaxation -- initially rms matched (R,’ =0 = R,;”),
hollowed (0 < & <1) density profile

Assume full relaxation to a uniform, matched density profile keeping fixed
space-charge intensity (c/cy=0.15) and vary the hollowing paramter  and
the steepening parameter p to examine sensitivity in changes in rms beam

parameters
Final to Initial rms Edge Radius Final to Initial rms Edge Emittance
1.03 pr=—r—rpy— T r T ' ey r T
1.025 F (51/0():0 15 | Gi/G():O.lS
-~ 1.02f
RS
N 1.015
S
R 1.0

0.8 1. 0 02 0.4 0.6 0.8 1.

uniform beam uniform beam
For all but the most exteme combination of steeping parameters (p >> 1) and
hollowing factors (% -> 0) the growth in rms radius and emittance remains
modest



Changes on Relaxation -- initially rms matched (R;’ = 0 = R,”),
hollowed (p =2, 0 <& <1) density profile

Recast results in terms of the increase in spatial average temperature on
relaxation to a uniform density profile
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a) Hollowed 0 < & < 1, Radial Index p =2 b) Peaked 0 < 1/h < 1, Radial Index p =2
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4) Hollowed 0 <% < 1, Radial Index p =2
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Large Scale WARP xy Slice Simulations
Investigate Collective Relaxation Processes

The electrostatic WARP code was developed by LLNL for simulation of
intense ion beams for Heavy Ion Fusion applications.

+ Extensive code with xy, r-z, 3D, and other modules

+ Variety of field solvers, particle movers, and diagnostics to check
modeling approximations |

+ Interpreter based (steerable) for flexability

+ Serial and massively parallel simulations

High resolution mid-pulse simulations carried out for an unbunched beam
centered on the machine.

+ 50-200 grids across characteristic beam radius

* 50-400 leap-frog steps per lattice period, up to 100 period advances
+ 100-1000 particles per grid cell

+ Round, cylindrical beam pipe > 2x beam edge to reduce 1mages



Perturbations launched by initial distribution nonuniformities can
phase-mix to a more uniform profile with increased emittance

Mode spectrum launched can undergo a rapid cascade, settling to a smalier
amplitude and lower order distortion

(1 Approximate conservation constraints employed to bound emittance increases resulting
from full relaxation to a uniform profile [Lund, Lee, and Barnard, Proc. Linac 2000, pg. 290]

A How will such evolutions influence the range and interpretation of measurements
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Analytic theory has been used to parametrically bound emittance
growth due to the relaxation of space-charge nonunifomities

Approximate conservation constraints can be employed to estimate maximal emittance
increases resulting from the relaxation of an initial nonuniform density profile to a final,
uniform profile [Lund, Lee, and Barnard, Proceedings Linac 2000, Monterey, CA, pg. 290]

Initial Density Emittance Growth on Relaxation
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Continuous Focusing Simulations

Inital Density Profile

Density: h=0.25 p=38
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Continuous Focusing Simulations

rms Emittance Evolution

Density: h=0.25 p=38
Temp: h=infinity p=2
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Continuous Focusing Simulations

Transient Density Profile Evolution
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Continuous Focusing Simulations

Density Profile Evolution — Initial and Saturated
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Slmulated Emittance Growth Values:

~ Continuous Focusing Simulations

Summary:of Results
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Alternating Gradient Focusing Simulations

rms Emittance Evolution
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“Alternating Gradient Focusing Simulations
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Alternating Gradient Focusing Simulations -
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Alternating Gradient Focusing Simulations

Summary of Results

Simulated Emittance Growth Values:
Avg. Relaxed (Peak, Min. —— Max. Fluctuations)

entries: [x—growth, y—growth]

‘to Relax|




Sensitivity of Results to the Final Distribution (1)

Real beams would not be expected to relax to a final state with uniform
space-charge but rather a smooth distribution that is monotonic decreasing
in the single-particle transverse energy

- Relaxation to other smooth distribution can be analyzed (for
theoretical convenience) as a cascade process with conservation laws

Initial Density Profile Uniform Density Profile Thermal Eq. Density Profile
| £ . 2
Conservation 2 Conservation %
R s <
Constraints Constraints
P
r Radius r Radius r Radius

Method has been applied to show that the change in emittance on relaxation
from a uniform to a smooth thermal equilibrium distribution is very small
[S.M. Lund, J.J. Barnard, and J.M. Miller, “On the Relaxation of Semi-Gaussian and K-V Beams to Thermal
Equilibrium,” Proceedings of the 1995 Particle Accelerator Conference, Dallas, TX, May 1-5, 1995, p. 3280]

. Only small differences are expected between thermal and other
smooth distributions in the space-charge dominated regime

For purposes of quantifying any significant emittance increases, results
presented here should accurately model a wide variety of more physical
choices in final distribution
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Sensitivity of Results to the Final Distribution (2)

Solid curves quantify small decreases in rms edge measures for the matched beam
radius and emittance that result on the relaxation of an initial, rms matched KV or
Semi-Gaussian distribution to thermal equilibrium and dots are the results of PIC
simulations (dashed lines indicate fluctuations)
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Why Large Amplitude Perturbations can be Thermalized in
Intense Beams with Small Emittance Growth (1)

For intense beams even a large relative changes in emittance leads to small changes
in rms beam radius

2 2
d R |,2 o| &x NLY
ARG R-ELE =0 = R,=R,=X=
ds B0 R 23 S kg0
Large Terms ~ Balance
For fixed charge (A, = 1) and rms radius (R; = R;) the difference in electrostatic field

energy (AF) between an initial hollowed or peaked density profile and a final uniform
density profile can be calculated as

AF=W,—w, =32 PO+ p+(+piphl, 110g[<p+4><ph+2)}}

(p+2)(p+H(2+ph)2 2 "Up+2)(ph+4)
0.03 ' ' ' Y r ' '
0.025 } Hollowed Peaked

0.02f

0.015}

AF /)2

0.01}

0.005 |

0

0 025 b;; 0.75 1. 075 050 025 0
The free energy AF is relatively small even for large hollowing (% -> 0) and peaking
( 1/k -> 0) factors accounting for the modest emittance growth



Why Large Amplitude Perturbations can be Thermalized in
Intense Beams with Small Emittance Growth (2)

For general distributions the free electrostatic energy F of an arbitrary
(nonuniform) initial distribution at fixed charge (1) and rms radius (R) can be
analyzed using variational methods:

2 20 = —
F[¢] — J‘{ (I)I uern_u2n}da \Y% <l) 47Ep

KLy, Uy = constants

2
OF[¢] = j{q(l) — ulrz — uz}ﬁnda + IIV;?' da (to Arbitrary Order)

It follows that:
. Constrained extrema of F satisfy (in beam)
— 2
qo = Wyre+ U,
-- Only solution consistent with this is a uniform density beam

. Variations about the uniform density extremum satisfy 67 > 0 and are
second order in 6¢

From these results one might expect the result of modest emittance growth
to be much more general than the specific choice of parabolically hollowed
and peaked initial density profiles employed for convenience here



Conclusions

PIC Simulations have been employed to show that beams with high space-
charge intensity transported in linear applied focusing channels can withstand
large initial space-charge nonuniformities.
+ Perturbations typically launch a broad spectrum of collective modes internal to
the beam |
+ Phase mixing and nonlinear interactions quickly drive the beam to a relaxed
state with a more uniform density profile and lower-order mode fluctuations

Large initial perturbations tolerable even with high space-charge intensity.
+ Emittance growth and halo minimal
+ Beam envelope match and control maintained

Simulations are consistent with earlier analytical theory based on
conservation constraints and also provide information on relaxation times and

residual fluctuations that are not obtained in the theory.
+ Results appear to apply to both alternating gradient and continuous focusing

Future and Ongoing

Combined effects of beam mismatch are being explored.
» Theory (done) indicates little change in results if mismatch energy not damped
*+ Simulations are underway to test and verify results
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